ADVANCED ULTRA LOW-POWER SEMICONDUCTOR DEVICES Written and edited by a team of experts in the field, this important new volume broadly covers the design and applications of metal oxide semiconductor field effect transistors. This outstanding new volume offers a comprehensive overview of cutting-edge semiconductor components tailored for ultra-low power applications. These components, pivotal to the foundation of electronic devices, play a central role in shaping the landscape of electronics. With a focus on emerging low-power electronic devices and their application across domains like wireless communication, biosensing, and circuits, this book presents an invaluable resource for understanding this dynamic field. Bringing together experts and researchers from various facets of the VLSI domain, the book addresses the challenges posed by advanced low-power devices. This collaborative effort aims to propel engineering innovations and refine the practical implementation of these technologies. Specific chapters delve into intricate topics such as Tunnel FET, negative capacitance FET device circuits, and advanced FETs tailored for diverse circuit applications. Beyond device-centric discussions, the book delves into the design intricacies of low-power memory systems, the fascinating realm of neuromorphic computing, and the pivotal issue of thermal reliability. Authors provide a robust foundation in device physics and circuitry while also exploring novel materials and architectures like transistors built on pioneering channel/dielectric materials. This exploration is driven by the need to achieve both minimal power consumption and ultra-fast switching speeds, meeting the relentless demands of the semiconductor industry. The book’s scope encompasses concepts like MOSFET, FinFET, GAA MOSFET, the 5-nm and 7-nm technology nodes, NCFET, ferroelectric materials, subthreshold swing, high-k materials, as well as advanced and emerging materials pivotal for the semiconductor industry’s future.
Leggi di più
Leggi di meno