Causal Discovery
Causal Discovery
Dati e Statistiche
Salvato in 0 liste dei desideri
Causal Discovery
Scaricabile subito
79,55 €
79,55 €
Scaricabile subito

Descrizione


This book presents an overview of causal discovery, an emergent field with important developments in the last few years, and multiple applications in several fields. The book is divided into three parts. The first part provides the necessary background on causal graphical models and causal reasoning. The second describes the main algorithms and techniques for causal discovery: (a) causal discovery from observational data, (b) causal discovery from interventional data, (c) causal discovery from temporal data, and (d) causal reinforcement learning. The third part provides several examples of causal discovery in practice, including applications in biomedicine, social sciences, artificial intelligence and robotics. Topics and features: Includes the necessary background material: a review of probability and graph theory, Bayesian networks, causal graphical models and causal reasoning Covers the main types of causal discovery: learning from observational data, learning from interventional data, and learning from temporal data Illustrates the application of causal discovery in practical problems Includes some of the latest developments in the field, such as continuous optimization, causal event networks, causal discovery under subsampling, subject specific causal models, and causal reinforcement learning Provides chapter exercises, including suggestions for research and programming projects This book can be used as a textbook for an advanced undergraduate or a graduate course on causal discovery for students of computer science, engineering, social sciences, etc. It can also be used as a complement to a course on causality, together with another text on causal reasoning. It could also serve as a reference book for professionals that want to apply causal models in different areas, or anyone who is interested in knowing the basis of these techniques. The intended audience are students and professionals in computer science, statistics and engineering who want to know the principles of causal discovery and / or applied them in different domains. It could also be of interest to students and professionals in other areas who want to apply causal discovery, for instance in medicine and economics.

Dettagli

Tutti i dispositivi (eccetto Kindle) Scopri di più
Reflowable
9783031983450

Compatibilità

Formato:

Gli eBook venduti da Feltrinelli.it sono in formato ePub e possono essere protetti da Adobe DRM. In caso di download di un file protetto da DRM si otterrà un file in formato .acs, (Adobe Content Server Message), che dovrà essere aperto tramite Adobe Digital Editions e autorizzato tramite un account Adobe, prima di poter essere letto su pc o trasferito su dispositivi compatibili.

Compatibilità:

Gli eBook venduti da Feltrinelli.it possono essere letti utilizzando uno qualsiasi dei seguenti dispositivi: PC, eReader, Smartphone, Tablet o con una app Kobo iOS o Android.

Cloud:

Gli eBook venduti da Feltrinelli.it sono sincronizzati automaticamente su tutti i client di lettura Kobo successivamente all’acquisto. Grazie al Cloud Kobo i progressi di lettura, le note, le evidenziazioni vengono salvati e sincronizzati automaticamente su tutti i dispositivi e le APP di lettura Kobo utilizzati per la lettura.

Clicca qui per sapere come scaricare gli ebook utilizzando un pc con sistema operativo Windows