Algoritmi predittivi per i tumori endocranici - Francesca Capochiani - ebook
Algoritmi predittivi per i tumori endocranici - Francesca Capochiani - ebook
EBOOK
Dati e Statistiche
Salvato in 0 liste dei desideri
Algoritmi predittivi per i tumori endocranici
Scaricabile subito
19,99 €
19,99 €
Scaricabile subito

Descrizione


Il libro "Algoritmi predittivi per i tumori endocranici" esplora il crescente ruolo degli algoritmi di machine learning nella medicina, con un focus particolare sulla loro applicazione nella predizione dei tumori endocranici. Questa tecnologia emergente promette di rivoluzionare il modo in cui vengono diagnosticati e trattati i tumori, grazie alla sua capacità di analizzare vasti set di dati e identificare schemi non evidenti all'occhio umano. Il testo si concentra su diversi tipi di algoritmi, tra cui reti neurali artificiali, support vector machines e decision trees, descrivendo come ciascuno possa essere impiegato per migliorare la diagnosi e la pianificazione del trattamento dei tumori endocranici. Le reti neurali artificiali, che imitano il funzionamento del cervello umano, sono capaci di riconoscere pattern complessi nei dati. Le support vector machines aiutano a classificare i dati in categorie distinte (ad esempio distinguendo tra tumori benigni e maligni), mentre le decision trees operano attraverso una serie di domande binarie per suddividere i dati. L'impiego di questi strumenti può notevolmente assistere i medici nel diagnosticare precocemente i tumori endocranici e nell'elaborare piani terapeutici personalizzati ed efficaci. Tuttavia, il libro sottolinea anche l'importanza dell'integrazione tra l'intelligenza artificiale e l'esperienza clinica dei medici. Gli algoritmi di machine learning non sono intesi come sostituti del giudizio clinico ma piuttosto come strumenti complementari che possono arricchire la pratica della medicina personalizzata. In conclusione, "Algoritmi predittivi per i tumori endocranici" offre una panoramica illuminante sul potenziale degli algoritmi di machine learning nel campo oncologico, delineando un futuro in cui la diagnosi e il trattamento dei tumori potrebbero diventare più rapidi, accurati e personalizzati.

Dettagli

Tutti i dispositivi (eccetto Kindle) Scopri di più
Reflowable
9791222753911

Compatibilità

Formato:

Gli eBook venduti da Feltrinelli.it sono in formato ePub e possono essere protetti da Adobe DRM. In caso di download di un file protetto da DRM si otterrà un file in formato .acs, (Adobe Content Server Message), che dovrà essere aperto tramite Adobe Digital Editions e autorizzato tramite un account Adobe, prima di poter essere letto su pc o trasferito su dispositivi compatibili.

Compatibilità:

Gli eBook venduti da Feltrinelli.it possono essere letti utilizzando uno qualsiasi dei seguenti dispositivi: PC, eReader, Smartphone, Tablet o con una app Kobo iOS o Android.

Cloud:

Gli eBook venduti da Feltrinelli.it sono sincronizzati automaticamente su tutti i client di lettura Kobo successivamente all’acquisto. Grazie al Cloud Kobo i progressi di lettura, le note, le evidenziazioni vengono salvati e sincronizzati automaticamente su tutti i dispositivi e le APP di lettura Kobo utilizzati per la lettura.

Clicca qui per sapere come scaricare gli ebook utilizzando un pc con sistema operativo Windows