Prognostics and Health Management in Energy and Power Systems
Prognostics and Health Management in Energy and Power Systems
Dati e Statistiche
Salvato in 0 liste dei desideri
Prognostics and Health Management in Energy and Power Systems
Scaricabile subito
129,99 €
129,99 €
Scaricabile subito

Descrizione


Key insights and practical guidance on transitioning to clean energy while meeting increasing energy demands, covering AI developments and more Prognostics and Health Management in Energy and Power Systems explores two highly topical subjects, energy transition and the latest advances in Artificial Intelligence, and provides insights and practical guidance for a smooth transition to clean, low-carbon energy while simultaneously continuing to meet the ever-increasing demand for energy. The first part of this book is completely devoted to the challenges, trends, and Asset Management requirements for the energy transition and explains why the energy system of the future must be resilient, autonomous, anticipatory, and situation-aware. The second part of the book presents key developments in recent years and shows the gradual shift from a collection of monolithic architectures for narrow, singular tasks to a set of modular, reconfigurable architectures capable of handling different types of tasks. An industrial case study is illustrated in the third part of the book, showing that Large-Scale Foundation models represent a promising technique to support the Prognostics and Health Management of the energy system. This book includes information on: Key differences between reliability and resilience, covering Low-Impact, High-Probability events and High-Impact, Low-Frequency events Important factors in the operation of current and future power plants and substations, including software, complexity, human error, data, and maintenance Modularity, reliability, and explainability of Large-Scale Foundation models Transformer-based Deep Neural Networks, covering Attention Mechanisms, Positional Encoding, and input-output data embedding Graph-based approaches to prognostics of complex machinery with sparse Run-to-Failure data, covering diagnostics feature extraction and graph dataset generation Prognostics and Health Management in Energy and Power Systems is an essential forward-thinking reference for engineers and researchers working in the energy sector with an interest in AI techniques and Machine Learning.

Dettagli

Tutti i dispositivi (eccetto Kindle) Scopri di più
Reflowable
9781394367009

Compatibilità

Formato:

Gli eBook venduti da Feltrinelli.it sono in formato ePub e possono essere protetti da Adobe DRM. In caso di download di un file protetto da DRM si otterrà un file in formato .acs, (Adobe Content Server Message), che dovrà essere aperto tramite Adobe Digital Editions e autorizzato tramite un account Adobe, prima di poter essere letto su pc o trasferito su dispositivi compatibili.

Compatibilità:

Gli eBook venduti da Feltrinelli.it possono essere letti utilizzando uno qualsiasi dei seguenti dispositivi: PC, eReader, Smartphone, Tablet o con una app Kobo iOS o Android.

Cloud:

Gli eBook venduti da Feltrinelli.it sono sincronizzati automaticamente su tutti i client di lettura Kobo successivamente all’acquisto. Grazie al Cloud Kobo i progressi di lettura, le note, le evidenziazioni vengono salvati e sincronizzati automaticamente su tutti i dispositivi e le APP di lettura Kobo utilizzati per la lettura.

Clicca qui per sapere come scaricare gli ebook utilizzando un pc con sistema operativo Windows