Bose Algebras: The Complex and Real Wave Representations
The mathematics of Bose-Fock spaces is built on the notion of a commutative algebra and this algebraic structure makes the theory appealing both to mathematicians with no background in physics and to theorectical and mathematical physicists who will at once recognize that the familiar set-up does not obscure the direct relevance to theoretical physics. The well-known complex and real wave representations appear here as natural consequences of the basic mathematical structure - a mathematician familiar with category theory will regard these representations as functors. Operators generated by creations and annihilations in a given Bose algebra are shown to give rise to a new Bose algebra of operators yielding the Weyl calculus of pseudo-differential operators. The book will be useful to mathematicians interested in analysis in infinitely many dimensions or in the mathematics of quantum fields and to theoretical physicists who can profit from the use of an effective and rigrous Bose formalism.
-
Autore:
-
Editore:
-
Collana:Lecture Notes in Mathematics
-
Anno:1991
-
Rilegatura:Paperback / softback
Le schede prodotto sono aggiornate in conformità al Regolamento UE 988/2023. Laddove ci fossero taluni dati non disponibili per ragioni indipendenti da Feltrinelli, vi informiamo che stiamo compiendo ogni ragionevole sforzo per inserirli. Vi invitiamo a controllare periodicamente il sito www.lafeltrinelli.it per eventuali novità e aggiornamenti.
Per le vendite di prodotti da terze parti, ciascun venditore si assume la piena e diretta responsabilità per la commercializzazione del prodotto e per la sua conformità al Regolamento UE 988/2023, nonché alle normative nazionali ed europee vigenti.
Per informazioni sulla sicurezza dei prodotti, contattare productsafety@feltrinelli.it