Classical Orthogonal Polynomials of a Discrete Variable
Mathematical modelling of many physical processes involves rather complex dif- ferential, integral, and integro-differential equations which can be solved directly only in a number of cases. Therefore, as a first step, an original problem has to be considerably simplified in order to get a preliminary knowledge of the most important qualitative features of the process under investigation and to estimate the effect of various factors. Sometimes a solution of the simplified problem can be obtained in the analytical form convenient for further investigation. At this stage of the mathematical modelling it is useful to apply various special functions. Many model problems of atomic, molecular, and nuclear physics, electrody- namics, and acoustics may be reduced to equations of hypergeometric type, a(x)y" + r(x)y' + AY = 0 , (0.1) where a(x) and r(x) are polynomials of at most the second and first degree re- spectively and A is a constant [E7, AI, N18]. Some solutions of (0.1) are functions extensively used in mathematical physics such as classical orthogonal polyno- mials (the Jacobi, Laguerre, and Hermite polynomials) and hypergeometric and confluent hypergeometric functions.
-
Autore:
-
Editore:
-
Collana:Scientific Computation
-
Anno:2012
-
Rilegatura:Paperback / softback
Le schede prodotto sono aggiornate in conformità al Regolamento UE 988/2023. Laddove ci fossero taluni dati non disponibili per ragioni indipendenti da Feltrinelli, vi informiamo che stiamo compiendo ogni ragionevole sforzo per inserirli. Vi invitiamo a controllare periodicamente il sito www.lafeltrinelli.it per eventuali novità e aggiornamenti.
Per le vendite di prodotti da terze parti, ciascun venditore si assume la piena e diretta responsabilità per la commercializzazione del prodotto e per la sua conformità al Regolamento UE 988/2023, nonché alle normative nazionali ed europee vigenti.
Per informazioni sulla sicurezza dei prodotti, contattare productsafety@feltrinelli.it