Ebook in inglese Deep Learning. Das umfassende Handbuch Bengio, Yoshua , Courville, Aaron , Goodfellow, Ian
Ebook in inglese Deep Learning. Das umfassende Handbuch Bengio, Yoshua , Courville, Aaron , Goodfellow, Ian
Dati e Statistiche
Salvato in 0 liste dei desideri
Deep Learning. Das umfassende Handbuch
Scaricabile subito
69,99 €
69,99 €
Scaricabile subito

Descrizione


Mathematische Grundlagen für Machine und Deep Learning Umfassende Behandlung zeitgemäßer Verfahren: tiefe Feedforward-Netze, Regularisierung, Performance-Optimierung sowie CNNs, Rekurrente und Rekursive Neuronale Netze Zukunftsweisende Deep-Learning-Ansätze sowie von Ian Goodfellow neu entwickelte Konzepte wie Generative Adversarial Networks Deep Learning ist ein Teilbereich des Machine Learnings und versetzt Computer in die Lage, aus Erfahrungen zu lernen. Dieses Buch behandelt umfassend alle Aspekte, die für den Einsatz und die Anwendung von Deep Learning eine Rolle spielen: In Teil I erläutern die Autoren die mathematischen Grundlagen für Künstliche Intelligenz, Neuronale Netze, Machine Learning und Deep Learning. In Teil II werden die aktuellen in der Praxis genutzten Verfahren und Algorithmen behandelt. In Teil III geben die Autoren Einblick in aktuelle Forschungsansätze und zeigen neue zukunftsweisende Verfahren auf. Dieses Buch richtet sich an Studenten und alle, die sich in der Forschung mit Deep Learning beschäftigen sowie an Softwareentwickler und Informatiker, die Deep Learning für eigene Produkte oder Plattformen einsetzen möchten. Dabei werden Grundkenntnisse in Mathematik, Informatik und Programmierung vorausgesetzt. Teil I: Angewandte Mathematik und Grundlagen für das Machine Learning Lineare Algebra Wahrscheinlichkeits- und Informationstheorie Bayessche Statistik Numerische Berechnung Teil II: Deep-Learning-Verfahren Tiefe Feedforward-Netze Regularisierung Optimierung beim Trainieren tiefer Modelle Convolutional Neural Networks Sequenzmodellierung für Rekurrente und Rekursive Netze Praxisorientierte Methodologie Anwendungen: Computer Vision, Spracherkennung, Verarbeitung natürlicher Sprache Teil III: Deep-Learning-Forschung Lineare Faktorenmodelle Autoencoder Representation Learning Probabilistische graphische Modelle Monte-Carlo-Verfahren Die Partitionsfunktion Approximative Inferenz Tiefe generative Modelle wie Restricted Boltzmann Machines, Deep-Belief-Netze, Gerichtete Generative Netze, Variational Autoencoder u.v.m.

Dettagli

Tedesco
Tutti i dispositivi (eccetto Kindle) Scopri di più
9783958457027

Compatibilità

Formato:

Gli eBook venduti da Feltrinelli.it sono in formato ePub e possono essere protetti da Adobe DRM. In caso di download di un file protetto da DRM si otterrà un file in formato .acs, (Adobe Content Server Message), che dovrà essere aperto tramite Adobe Digital Editions e autorizzato tramite un account Adobe, prima di poter essere letto su pc o trasferito su dispositivi compatibili.

Compatibilità:

Gli eBook venduti da Feltrinelli.it possono essere letti utilizzando uno qualsiasi dei seguenti dispositivi: PC, eReader, Smartphone, Tablet o con una app Kobo iOS o Android.

Cloud:

Gli eBook venduti da Feltrinelli.it sono sincronizzati automaticamente su tutti i client di lettura Kobo successivamente all’acquisto. Grazie al Cloud Kobo i progressi di lettura, le note, le evidenziazioni vengono salvati e sincronizzati automaticamente su tutti i dispositivi e le APP di lettura Kobo utilizzati per la lettura.

Clicca qui per sapere come scaricare gli ebook utilizzando un pc con sistema operativo Windows