Deep Reinforcement Learning
Deep Reinforcement Learning
Dati e Statistiche
Salvato in 0 liste dei desideri
Deep Reinforcement Learning
Scaricabile subito
9,99 €
9,99 €
Scaricabile subito

Descrizione


Alle wichtigen Methoden und Algorithmen praxisnah erläutert mit Codebeispielen in Python Selbstständig lernende Agenten programmieren für die Steuerung von Robotern, NLP in interaktiven Spielen, Chatbots und mehr Deep Q-Networks, Wertiteration, Policy Gradients, Trust Region Policy Optimization (TRPO), genetische Algorithmen, moderne Explorationsverfahren u.v.m. Reinforcement Learning ist ein Teilgebiet des Machine Learnings. Hierbei werden selbstständig lernende Agenten programmiert, deren Lernvorgang ausschließlich durch ein Belohnungssystem und die Beobachtung der Umgebung gesteuert wird. In diesem umfassenden Praxis-Handbuch zeigt Ihnen Maxim Lapan, wie Sie diese zukunftsweisende Technologie in der Praxis einsetzen. Sie lernen, wie Sie passende RL-Methoden für Ihre Problemstellung auswählen und mithilfe von Deep-Learning-Methoden Agenten für verschiedene Aufgaben trainieren wie zum Beispiel für das Lösen eines Zauberwürfels, für Natural Language Processing in Microsofts TextWorld-Umgebung oder zur Realisierung moderner Chatbots. Alle Beispiele sind so gewählt, dass sie leicht verständlich sind und Sie diese auch ohne Zugang zu sehr großer Rechenleistung umsetzen können. Unter Einsatz von Python und der Bibliothek PyTorch ermöglicht Ihnen der Autor so einen einfachen und praktischen Einstieg in die Konzepte und Methoden des Reinforcement Learnings wie Deep Q-Networks, Wertiteration, Policy Gradients, Trust Region Policy Optimization (TRPO), genetische Algorithmen und viele mehr. Es werden grundlegende Kenntnisse in Machine Learning und Deep Learning sowie ein sicherer Umgang mit Python vorausgesetzt. Aus dem Inhalt: Implementierung komplexer Deep-Learning-Modelle mit RL in tiefen neuronalen Netzen Ermitteln der passenden RL-Methoden für verschiedene Problemstellungen, darunter DQN, Advantage Actor Critic, PPO, TRPO, DDPG, D4PG und mehr Bauen und Trainieren eines kostengünstigen Hardware-Roboters NLP in Microsofts TextWorld-Umgebung für interaktive Spiele Diskrete Optimierung für das Lösen von Zauberwürfeln Trainieren von Agenten für Vier Gewinnt mittels AlphaGo Zero Die neuesten Deep-RL-Methoden für Chatbots Moderne Explorationsverfahren wie verrauschte Netze und Netz-Destillation

Dettagli

Tutti i dispositivi (eccetto Kindle) Scopri di più
Reflowable
9783747500385

Compatibilità

Formato:

Gli eBook venduti da Feltrinelli.it sono in formato ePub e possono essere protetti da Adobe DRM. In caso di download di un file protetto da DRM si otterrà un file in formato .acs, (Adobe Content Server Message), che dovrà essere aperto tramite Adobe Digital Editions e autorizzato tramite un account Adobe, prima di poter essere letto su pc o trasferito su dispositivi compatibili.

Compatibilità:

Gli eBook venduti da Feltrinelli.it possono essere letti utilizzando uno qualsiasi dei seguenti dispositivi: PC, eReader, Smartphone, Tablet o con una app Kobo iOS o Android.

Cloud:

Gli eBook venduti da Feltrinelli.it sono sincronizzati automaticamente su tutti i client di lettura Kobo successivamente all’acquisto. Grazie al Cloud Kobo i progressi di lettura, le note, le evidenziazioni vengono salvati e sincronizzati automaticamente su tutti i dispositivi e le APP di lettura Kobo utilizzati per la lettura.

Clicca qui per sapere come scaricare gli ebook utilizzando un pc con sistema operativo Windows