Intelligent Industrial Alarm Systems
This book fills a gap in existing literature by providing a comprehensive academic perspective on industrial alarm systems, offering systematic methodologies, practical techniques, and visual analytic tools for engineers to improve system performance and design. Modern industrial plants rely on computerized monitoring systems to track hundreds of process variables in real time, enabling operators to maintain safe and efficient conditions. Automatic industrial alarm systems play a crucial role in alerting operators to abnormalities, such as high vessel levels, that could lead to unsafe conditions if left unaddressed. While contemporary alarm systems can be plagued with issues like nuisance alarms, recent academic research has introduced advanced methodologies, like Markov chain theory and Bayesian estimation, to optimize alarm parameters and enhance system performance. By integrating these theoretical advancements into practical applications, the goal is to develop intelligent industrial alarm systems that leverage historical data and process knowledge to predict and prevent alarm floods, ultimately ensuring safer and more efficient plant operations.
-
Autore:
-
Anno edizione:2024
-
Editore:
-
Formato:
-
Lingua:Inglese
Formato:
Gli eBook venduti da Feltrinelli.it sono in formato ePub e possono essere protetti da Adobe DRM. In caso di download di un file protetto da DRM si otterrà un file in formato .acs, (Adobe Content Server Message), che dovrà essere aperto tramite Adobe Digital Editions e autorizzato tramite un account Adobe, prima di poter essere letto su pc o trasferito su dispositivi compatibili.
Cloud:
Gli eBook venduti da Feltrinelli.it sono sincronizzati automaticamente su tutti i client di lettura Kobo successivamente all’acquisto. Grazie al Cloud Kobo i progressi di lettura, le note, le evidenziazioni vengono salvati e sincronizzati automaticamente su tutti i dispositivi e le APP di lettura Kobo utilizzati per la lettura.
Clicca qui per sapere come scaricare gli ebook utilizzando un pc con sistema operativo Windows