Machine Learning Systems for Multimodal Affect Recognition
Markus Kächele offers a detailed view on the different steps in the affective computing pipeline, ranging from corpus design and recording over annotation and feature extraction to post-processing, classification of individual modalities and fusion in the context of ensemble classifiers. He focuses on multimodal recognition of discrete and continuous emotional and medical states. As such, specifically the peculiarities that arise during annotation and processing of continuous signals are highlighted. Furthermore, methods are presented that allow personalization of datasets and adaptation of classifiers to new situations and persons.
-
Autore:
-
Editore:
-
Anno:2019
-
Rilegatura:Paperback / softback
-
Pagine:188 p.
Le schede prodotto sono aggiornate in conformità al Regolamento UE 988/2023. Laddove ci fossero taluni dati non disponibili per ragioni indipendenti da Feltrinelli, vi informiamo che stiamo compiendo ogni ragionevole sforzo per inserirli. Vi invitiamo a controllare periodicamente il sito www.lafeltrinelli.it per eventuali novità e aggiornamenti.
Per le vendite di prodotti da terze parti, ciascun venditore si assume la piena e diretta responsabilità per la commercializzazione del prodotto e per la sua conformità al Regolamento UE 988/2023, nonché alle normative nazionali ed europee vigenti.
Per informazioni sulla sicurezza dei prodotti, contattare productsafety@feltrinelli.it