Parameter Identification for a Stochastic Partial Differential Equation in the Nonstationary Case
This thesis investigates the mathematical problem of parameter identification in an equation arising from the study of how cells move on an embryo during its development. The motion of the cells can be modeled as particles evolving on a two-dimensional manifold according to a stochastic differential equation. The specific focus here is on estimating the drift parameter of this equation by observing the positions of a finite number of particles at different points in time. The general approach to approximate the solution of this ill-posed problem is to minimize a Tikhonov functional based on a regularized log-likelihood. To assess the error of this approximation, tools from the theory of ill-posed problems are required. The thesis begins with a chronological review of fundamental results in nonlinear ill-posed problems, with the aim of motivating the assumptions underlying the main result as well as the techniques employed in its analysis from a historical perspective.
-
Autore:
-
Anno edizione:2026
-
Editore:
-
Formato:
-
Lingua:Inglese
Formato:
Gli eBook venduti da Feltrinelli.it sono in formato ePub e possono essere protetti da Adobe DRM. In caso di download di un file protetto da DRM si otterrà un file in formato .acs, (Adobe Content Server Message), che dovrà essere aperto tramite Adobe Digital Editions e autorizzato tramite un account Adobe, prima di poter essere letto su pc o trasferito su dispositivi compatibili.
Cloud:
Gli eBook venduti da Feltrinelli.it sono sincronizzati automaticamente su tutti i client di lettura Kobo successivamente all’acquisto. Grazie al Cloud Kobo i progressi di lettura, le note, le evidenziazioni vengono salvati e sincronizzati automaticamente su tutti i dispositivi e le APP di lettura Kobo utilizzati per la lettura.
Clicca qui per sapere come scaricare gli ebook utilizzando un pc con sistema operativo Windows