Representations of Solvable Groups
Representation theory plays an important role in algebra, and in this book Manz and Wolf concentrate on that part of the theory which relates to solvable groups. The authors begin by studying modules over finite fields, which arise naturally as chief factors of solvable groups. The information obtained can then be applied to infinite modules, and in particular to character theory (ordinary and Brauer) of solvable groups. The authors include proofs of Brauer's height zero conjecture and the Alperin-McKay conjecture for solvable groups. Gluck's permutation lemma and Huppert's classification of solvable two-transive permutation groups, which are essentially results about finite modules of finite groups, play important roles in the applications and a new proof is given of the latter. Researchers into group theory, representation theory, or both, will find that this book has much to offer.
-
Autore:
-
Editore:
-
Collana:London Mathematical Society Lecture Note Series
-
Anno:1993
-
Rilegatura:Paperback / softback
-
Pagine:316 p.
Le schede prodotto sono aggiornate in conformità al Regolamento UE 988/2023. Laddove ci fossero taluni dati non disponibili per ragioni indipendenti da Feltrinelli, vi informiamo che stiamo compiendo ogni ragionevole sforzo per inserirli. Vi invitiamo a controllare periodicamente il sito www.lafeltrinelli.it per eventuali novità e aggiornamenti.
Per le vendite di prodotti da terze parti, ciascun venditore si assume la piena e diretta responsabilità per la commercializzazione del prodotto e per la sua conformità al Regolamento UE 988/2023, nonché alle normative nazionali ed europee vigenti.
Per informazioni sulla sicurezza dei prodotti, contattare productsafety@feltrinelli.it