Advances in Big Data Analytics: Theory, Algorithms and Practices
Today, big data affects countless aspects of our daily lives. This book provides a comprehensive and cutting-edge study on big data analytics, based on the research findings and applications developed by the author and his colleagues in related areas. It addresses the concepts of big data analytics and/or data science, multi-criteria optimization for learning, expert and rule-based data analysis, support vector machines for classification, feature selection, data stream analysis, learning analysis, sentiment analysis, link analysis, and evaluation analysis. The book also explores lessons learned in applying big data to business, engineering and healthcare. Lastly, it addresses the advanced topic of intelligence-quotient (IQ) tests for artificial intelligence. Since each aspect mentioned above concerns a specific domain of application, taken together, the algorithms, procedures, analysis and empirical studies presented here offer a general picture of big data developments. Accordingly, the book can not only serve as a textbook for graduates with a fundamental grasp of training in big data analytics, but can also show practitioners how to use the proposed techniques to deal with real-world big data problems.
-
Autore:
-
Editore:
-
Anno:2022
-
Rilegatura:Hardback
-
Pagine:728 p.
Le schede prodotto sono aggiornate in conformità al Regolamento UE 988/2023. Laddove ci fossero taluni dati non disponibili per ragioni indipendenti da Feltrinelli, vi informiamo che stiamo compiendo ogni ragionevole sforzo per inserirli. Vi invitiamo a controllare periodicamente il sito www.lafeltrinelli.it per eventuali novità e aggiornamenti.
Per le vendite di prodotti da terze parti, ciascun venditore si assume la piena e diretta responsabilità per la commercializzazione del prodotto e per la sua conformità al Regolamento UE 988/2023, nonché alle normative nazionali ed europee vigenti.
Per informazioni sulla sicurezza dei prodotti, contattare productsafety@feltrinelli.it