AI Mathematics: Advanced Neural Network Approximation
This book presents the new idea of going from the neural networks main tools, the activation functions, to convolution integrals and singular integrals approximations. That is the rare case of employing applied mathematics to treat theoretical ones. Authors introduce and use also the symmetrized neural network operators able to achieve supersonic speeds of convergence. Authors use a great variety of activation functions. Thus, in this book all presented is original work by the author given at a very general level to cover a maximum number of different kinds of Neural Networks: giving ordinary, fractional, and stochastic approximations. It is presented here univariate, fractional, and multivariate approximations. Iterated-sequential multi-layer approximations are also studied.
-
Autore:
-
Editore:
-
Collana:Studies in Computational Intelligence
-
Anno:2026
-
Rilegatura:Hardback
Le schede prodotto sono aggiornate in conformità al Regolamento UE 988/2023. Laddove ci fossero taluni dati non disponibili per ragioni indipendenti da Feltrinelli, vi informiamo che stiamo compiendo ogni ragionevole sforzo per inserirli. Vi invitiamo a controllare periodicamente il sito www.lafeltrinelli.it per eventuali novità e aggiornamenti.
Per le vendite di prodotti da terze parti, ciascun venditore si assume la piena e diretta responsabilità per la commercializzazione del prodotto e per la sua conformità al Regolamento UE 988/2023, nonché alle normative nazionali ed europee vigenti.
Per informazioni sulla sicurezza dei prodotti, contattare productsafety@feltrinelli.it