Convex Functions, Monotone Operators and Differentiability
In the three and a half years since the first edition to these notes was written there has been progress on a number of relevant topics. D. Preiss answered in the affirmative the decades old question of whether a Banach space with an equivalent Gateaux differentiable norm is a weak Asplund space, while R. Haydon constructed some very ingenious examples which show, among other things, that the converse to Preiss' theorem is false. S. Simons produced a startlingly simple proof of Rockafellar's maximal monotonicity theorem for subdifferentials of convex functions. G. Godefroy, R. Deville and V. Zizler proved an exciting new version ofthe Borwein-Preiss smooth variational prin- ciple. Other new contributions to the area have come from J. Borwein, S. Fitzpatrick, P. Kenderov, 1. Namioka, N. Ribarska, A. and M. E. Verona and the author. Some ofthe new material and substantial portions ofthe first edition were used in a one-quarter graduate course at the University of Washington in 1991 (leading to a number of corrections and improvements) and some of the new theorems were presented in the Rainwater Seminar. An obvious improvement is due to the fact that I learned to use '!EX. The task of converting the original MacWrite text to '!EXwas performed by Ms. Mary Sheetz, to whom I am extremely grateful.
-
Autore:
-
Editore:
-
Collana:Lecture Notes in Mathematics
-
Anno:1993
-
Rilegatura:Paperback / softback
Le schede prodotto sono aggiornate in conformità al Regolamento UE 988/2023. Laddove ci fossero taluni dati non disponibili per ragioni indipendenti da Feltrinelli, vi informiamo che stiamo compiendo ogni ragionevole sforzo per inserirli. Vi invitiamo a controllare periodicamente il sito www.lafeltrinelli.it per eventuali novità e aggiornamenti.
Per le vendite di prodotti da terze parti, ciascun venditore si assume la piena e diretta responsabilità per la commercializzazione del prodotto e per la sua conformità al Regolamento UE 988/2023, nonché alle normative nazionali ed europee vigenti.
Per informazioni sulla sicurezza dei prodotti, contattare productsafety@feltrinelli.it