Machine Learning mit Python und Keras, TensorFlow 2 und Scikit-learn
Machine Learning mit Python und Keras, TensorFlow 2 und Scikit-learn
Dati e Statistiche
Salvato in 0 liste dei desideri
Machine Learning mit Python und Keras, TensorFlow 2 und Scikit-learn
Scaricabile subito
19,99 €
19,99 €
Scaricabile subito

Descrizione


Datenanalyse mit ausgereiften statistischen Modellen des Machine Learnings Anwendung der wichtigsten Algorithmen und Python-Bibliotheken wie NumPy, SciPy, Scikit-learn, Keras, TensorFlow 2, Pandas und Matplotlib Best Practices zur Optimierung Ihrer Machine-Learning-Algorithmen Mit diesem Buch erhalten Sie eine umfassende Einführung in die Grundlagen und den effektiven Einsatz von Machine-Learning- und Deep-Learning-Algorithmen und wenden diese anhand zahlreicher Beispiele praktisch an. Dafür setzen Sie ein breites Spektrum leistungsfähiger Python-Bibliotheken ein, insbesondere Keras, TensorFlow 2 und Scikit-learn. Auch die für die praktische Anwendung unverzichtbaren mathematischen Konzepte werden verständlich und anhand zahlreicher Diagramme anschaulich erläutert. Die dritte Auflage dieses Buchs wurde für TensorFlow 2 komplett aktualisiert und berücksichtigt die jüngsten Entwicklungen und Technologien, die für Machine Learning, Neuronale Netze und Deep Learning wichtig sind. Dazu zählen insbesondere die neuen Features der Keras-API, das Synthetisieren neuer Daten mit Generative Adversarial Networks (GANs) sowie die Entscheidungsfindung per Reinforcement Learning. Ein sicherer Umgang mit Python wird vorausgesetzt. Aus dem Inhalt: Trainieren von Lernalgorithmen und Implementierung in Python Gängige Klassifikationsalgorithmen wie Support Vector Machines (SVM), Entscheidungsbäume und Random Forest Natural Language Processing zur Klassifizierung von Filmbewertungen Clusteranalyse zum Auffinden verborgener Muster und Strukturen in Ihren Daten Deep-Learning-Verfahren für die Bilderkennung Datenkomprimierung durch Dimensionsreduktion Training Neuronaler Netze und GANs mit TensorFlow 2 Kombination verschiedener Modelle für das Ensemble Learning Einbettung von Machine-Learning-Modellen in Webanwendungen Stimmungsanalyse in Social Networks Modellierung sequenzieller Daten durch rekurrente Neuronale Netze Reinforcement Learning und Implementierung von Q-Learning-Algorithmen

Dettagli

Tutti i dispositivi (eccetto Kindle) Scopri di più
Reflowable
9783747502150

Compatibilità

Formato:

Gli eBook venduti da Feltrinelli.it sono in formato ePub e possono essere protetti da Adobe DRM. In caso di download di un file protetto da DRM si otterrà un file in formato .acs, (Adobe Content Server Message), che dovrà essere aperto tramite Adobe Digital Editions e autorizzato tramite un account Adobe, prima di poter essere letto su pc o trasferito su dispositivi compatibili.

Compatibilità:

Gli eBook venduti da Feltrinelli.it possono essere letti utilizzando uno qualsiasi dei seguenti dispositivi: PC, eReader, Smartphone, Tablet o con una app Kobo iOS o Android.

Cloud:

Gli eBook venduti da Feltrinelli.it sono sincronizzati automaticamente su tutti i client di lettura Kobo successivamente all’acquisto. Grazie al Cloud Kobo i progressi di lettura, le note, le evidenziazioni vengono salvati e sincronizzati automaticamente su tutti i dispositivi e le APP di lettura Kobo utilizzati per la lettura.

Clicca qui per sapere come scaricare gli ebook utilizzando un pc con sistema operativo Windows