Mastering PyTorch: Build powerful neural network architectures using advanced PyTorch 1.x features - Ashish Ranjan Jha - cover
Mastering PyTorch: Build powerful neural network architectures using advanced PyTorch 1.x features - Ashish Ranjan Jha - cover
Dati e Statistiche
Salvato in 0 liste dei desideri
Mastering PyTorch: Build powerful neural network architectures using advanced PyTorch 1.x features
Disponibilità in 2 settimane
79,90 €
79,90 €
Disponibilità in 2 settimane

Descrizione


Master advanced techniques and algorithms for deep learning with PyTorch using real-world examples Key Features Understand how to use PyTorch 1.x to build advanced neural network models Learn to perform a wide range of tasks by implementing deep learning algorithms and techniques Gain expertise in domains such as computer vision, NLP, Deep RL, Explainable AI, and much more Book DescriptionDeep learning is driving the AI revolution, and PyTorch is making it easier than ever before for anyone to build deep learning applications. This PyTorch book will help you uncover expert techniques to get the most out of your data and build complex neural network models. The book starts with a quick overview of PyTorch and explores using convolutional neural network (CNN) architectures for image classification. You'll then work with recurrent neural network (RNN) architectures and transformers for sentiment analysis. As you advance, you'll apply deep learning across different domains, such as music, text, and image generation using generative models and explore the world of generative adversarial networks (GANs). You'll not only build and train your own deep reinforcement learning models in PyTorch but also deploy PyTorch models to production using expert tips and techniques. Finally, you'll get to grips with training large models efficiently in a distributed manner, searching neural architectures effectively with AutoML, and rapidly prototyping models using PyTorch and fast.ai. By the end of this PyTorch book, you'll be able to perform complex deep learning tasks using PyTorch to build smart artificial intelligence models. What you will learn Implement text and music generating models using PyTorch Build a deep Q-network (DQN) model in PyTorch Export universal PyTorch models using Open Neural Network Exchange (ONNX) Become well-versed with rapid prototyping using PyTorch with fast.ai Perform neural architecture search effectively using AutoML Easily interpret machine learning (ML) models written in PyTorch using Captum Design ResNets, LSTMs, Transformers, and more using PyTorch Find out how to use PyTorch for distributed training using the torch.distributed API Who this book is forThis book is for data scientists, machine learning researchers, and deep learning practitioners looking to implement advanced deep learning paradigms using PyTorch 1.x. Working knowledge of deep learning with Python programming is required.

Dettagli

Testo in English
93 x 75 mm
9781789614381
Informazioni e Contatti sulla Sicurezza dei Prodotti

Le schede prodotto sono aggiornate in conformità al Regolamento UE 988/2023. Laddove ci fossero taluni dati non disponibili per ragioni indipendenti da Feltrinelli, vi informiamo che stiamo compiendo ogni ragionevole sforzo per inserirli. Vi invitiamo a controllare periodicamente il sito www.lafeltrinelli.it per eventuali novità e aggiornamenti.
Per le vendite di prodotti da terze parti, ciascun venditore si assume la piena e diretta responsabilità per la commercializzazione del prodotto e per la sua conformità al Regolamento UE 988/2023, nonché alle normative nazionali ed europee vigenti.

Per informazioni sulla sicurezza dei prodotti, contattare productsafety@feltrinelli.it