Chiudi

Aggiungi l'articolo in

Chiudi
Aggiunto

L’articolo è stato aggiunto alla lista dei desideri

Chiudi

Crea nuova lista

Prognose von Wohnungseinbrüchen mit Hilfe von Machine-Learning-Algorithmen
Prognose von Wohnungseinbrüchen mit Hilfe von Machine-Learning-Algorithmen
Dati e Statistiche
Wishlist Salvato in 0 liste dei desideri
Prognose von Wohnungseinbrüchen mit Hilfe von Machine-Learning-Algorithmen
Scaricabile subito
48,14 €
48,14 €
Scaricabile subito
Chiudi

Altre offerte vendute e spedite dai nostri venditori

Altri venditori
Prezzo e spese di spedizione
ibs
Spedizione Gratis
48,14 €
Vai alla scheda completa
Altri venditori
Prezzo e spese di spedizione
ibs
Spedizione Gratis
48,14 €
Vai alla scheda completa
Altri venditori
Prezzo e spese di spedizione
Chiudi
ibs
Chiudi

Tutti i formati ed edizioni

Chiudi
Prognose von Wohnungseinbrüchen mit Hilfe von Machine-Learning-Algorithmen
Chiudi

Promo attive (0)

Chiudi

Informazioni del regalo

Descrizione


Das Buch beschäftigt sich mit der Möglichkeit der Prognose von Wohnungseinbrüchen mit Hilfe von Machine-Learning-Verfahren. Die Analyse beschränkt sich auf die Fragestellung, ob nach einem erfolgten Wohnungseinbruch mit einer Nachfolgetat, den sog. Near-Repeats, zu rechnen ist. Dabei wird untersucht, welche Faktoren zu guten Prognoseergebnissen beitragen. Zur Verfügung stehen Daten zu Wohnungseinbrüchen aus Baden-Württemberg aus den Jahren 2010 bis 2017. Ergänzt werden die polizeilichen Daten um geografische Daten, die den Tatort beschreiben. Hiermit wird geprüft, ob kriminalgeografische Faktoren gute Indikatoren zur Prognose von Wohnungseinbrüchen, genauer gesagt Near-Repeats, darstellen. Als Machine-Learning-Verfahren kommen die Verfahren Random Forest, XGBoost, Support Vector Machines, Neuronale Netze und ein Soft-Voting der Modelle zum Einsatz. Mit Hilfe dieser Verfahren kann eine Präzision der Prognosen von über 60% erreicht werden. Es wird außerdem erstmalig gezeigt, dass auch Prognosen für den ländlichen Raum möglich sind.
Leggi di più Leggi di meno

Dettagli

2022
Testo in TED
Tutti i dispositivi (eccetto Kindle) Scopri di più
Reflowable
9783658376604
Chiudi
Aggiunto

L'articolo è stato aggiunto al carrello

Compatibilità

Formato:

Gli eBook venduti da Feltrinelli.it sono in formato ePub e possono essere protetti da Adobe DRM. In caso di download di un file protetto da DRM si otterrà un file in formato .acs, (Adobe Content Server Message), che dovrà essere aperto tramite Adobe Digital Editions e autorizzato tramite un account Adobe, prima di poter essere letto su pc o trasferito su dispositivi compatibili.

Compatibilità:

Gli eBook venduti da Feltrinelli.it possono essere letti utilizzando uno qualsiasi dei seguenti dispositivi: PC, eReader, Smartphone, Tablet o con una app Kobo iOS o Android.

Cloud:

Gli eBook venduti da Feltrinelli.it sono sincronizzati automaticamente su tutti i client di lettura Kobo successivamente all’acquisto. Grazie al Cloud Kobo i progressi di lettura, le note, le evidenziazioni vengono salvati e sincronizzati automaticamente su tutti i dispositivi e le APP di lettura Kobo utilizzati per la lettura.

Clicca qui per sapere come scaricare gli ebook utilizzando un pc con sistema operativo Windows

Chiudi

Aggiungi l'articolo in

Chiudi
Aggiunto

L’articolo è stato aggiunto alla lista dei desideri

Chiudi

Crea nuova lista

Chiudi

Inserisci la tua mail

Chiudi

Chiudi

Siamo spiacenti si è verificato un errore imprevisto, la preghiamo di riprovare.

Chiudi

Verrai avvisato via email sulle novità di Nome Autore