Second-Order Equations With Nonnegative Characteristic Form
Second order equations with nonnegative characteristic form constitute a new branch of the theory of partial differential equations, having arisen within the last 20 years, and having undergone a particularly intensive development in recent years. An equation of the form (1) is termed an equation of second order with nonnegative characteristic form on a set G, kj if at each point x belonging to G we have a (xHk~j ~ 0 for any vector ~ = (~l' ... '~m)' In equation (1) it is assumed that repeated indices are summed from 1 to m, and x = (x l' ••• , x ). Such equations are sometimes also called degenerating m elliptic equations or elliptic-parabolic equations. This class of equations includes those of elliptic and parabolic types, first order equations, ultraparabolic equations, the equations of Brownian motion, and others. The foundation of a general theory of second order equations with nonnegative characteristic form has now been established, and the purpose of this book is to pre sent this foundation. Special classes of equations of the form (1), not coinciding with the well-studied equations of elliptic or parabolic type, were investigated long ago, particularly in the paper of Picone [105], published some 60 years ago.
-
Autore:
-
Editore:
-
Anno:2012
-
Rilegatura:Paperback / softback
-
Pagine:259 p.
Le schede prodotto sono aggiornate in conformità al Regolamento UE 988/2023. Laddove ci fossero taluni dati non disponibili per ragioni indipendenti da Feltrinelli, vi informiamo che stiamo compiendo ogni ragionevole sforzo per inserirli. Vi invitiamo a controllare periodicamente il sito www.lafeltrinelli.it per eventuali novità e aggiornamenti.
Per le vendite di prodotti da terze parti, ciascun venditore si assume la piena e diretta responsabilità per la commercializzazione del prodotto e per la sua conformità al Regolamento UE 988/2023, nonché alle normative nazionali ed europee vigenti.
Per informazioni sulla sicurezza dei prodotti, contattare productsafety@feltrinelli.it