Assuring Safe Operation of Robotic Systems under Uncertainty: Control and Learning Methods
Assuring Safe Operation of Robotic Systems under Uncertainty: Control and Learning Methods applies set-theoretic and reinforcement learning approaches to formulate, analyze, and solve the challenge of ensuring safe operation of robotic systems in an uncertain environment. The authors adopt learning-supported, set-theoretic methods—specifically, the barrier Lyapunov function and the control barrier function—to achieve desirable robust safety with guaranteed performance in continuous-time nonlinear control applications. They also combine reinforcement learning with control theory to ensure safe learning and optimization. The reinforcement learning-based optimization framework incorporates safety and robustness guarantees by applying theoretical analysis tools from the field of control. This book will be of interest to researchers, engineers, and students specializing in robot planning and control.
-
Autore:
-
Editore:
-
Anno:2025
-
Rilegatura:Hardback
-
Pagine:114 p.
Le schede prodotto sono aggiornate in conformità al Regolamento UE 988/2023. Laddove ci fossero taluni dati non disponibili per ragioni indipendenti da Feltrinelli, vi informiamo che stiamo compiendo ogni ragionevole sforzo per inserirli. Vi invitiamo a controllare periodicamente il sito www.lafeltrinelli.it per eventuali novità e aggiornamenti.
Per le vendite di prodotti da terze parti, ciascun venditore si assume la piena e diretta responsabilità per la commercializzazione del prodotto e per la sua conformità al Regolamento UE 988/2023, nonché alle normative nazionali ed europee vigenti.
Per informazioni sulla sicurezza dei prodotti, contattare productsafety@feltrinelli.it