Finite Free Resolutions
An important part of homological algebra deals with modules possessing projective resolutions of finite length. This goes back to Hilbert's famous theorem on syzygies through, in the earlier theory, free modules with finite bases were used rather than projective modules. The introduction of a wider class of resolutions led to a theory rich in results, but in the process certain special properties of finite free resolutions were overlooked. D. A. Buchsbaum and D. Eisenbud have shown that finite free resolutions have a fascinating structure theory. This has revived interest in the simpler kind of resolution and caused the subject to develop rapidly. This Cambridge Tract attempts to give a genuinely self-contained and elementary presentation of the basic theory, and to provide a sound foundation for further study. The text contains a substantial number of exercises. These enable the reader to test his understanding and they allow the subject to be developed more rapidly. Each chapter ends with the solutions to the exercises contained in it.
-
Autore:
-
Editore:
-
Collana:Cambridge Tracts in Mathematics
-
Anno:2004
-
Rilegatura:Paperback / softback
-
Pagine:284 p.
Le schede prodotto sono aggiornate in conformità al Regolamento UE 988/2023. Laddove ci fossero taluni dati non disponibili per ragioni indipendenti da Feltrinelli, vi informiamo che stiamo compiendo ogni ragionevole sforzo per inserirli. Vi invitiamo a controllare periodicamente il sito www.lafeltrinelli.it per eventuali novità e aggiornamenti.
Per le vendite di prodotti da terze parti, ciascun venditore si assume la piena e diretta responsabilità per la commercializzazione del prodotto e per la sua conformità al Regolamento UE 988/2023, nonché alle normative nazionali ed europee vigenti.
Per informazioni sulla sicurezza dei prodotti, contattare productsafety@feltrinelli.it