Learning Pandas 2.0
"Learning Pandas 2.0" is an essential guide for anyone looking to harness the power of Python's premier data manipulation library. With this comprehensive resource, you will not only master core Pandas 2.0 concepts but also learn how to employ its advanced features to perform efficient data manipulation and analysis. Throughout the book, you will acquire a deep understanding of Pandas 2.0's data structures, indexing, and selection techniques. Gain expertise in loading, storing, and cleaning data from various file formats and sources, ensuring data integrity and consistency. As you progress, you will delve into advanced data transformation, merging, and aggregation methods to extract meaningful insights and generate insightful reports. "Learning Pandas 2.0" also covers specialized data processing needs like time series data, DateTime operations, and geospatial analysis. Furthermore, this book demonstrates how to integrate Pandas 2.0 with machine learning libraries like Scikit-learn, TensorFlow, and PyTorch for predictive analytics. This will empower you to build powerful data-driven models to solve complex problems and enhance your decision-making capabilities. Key Learnings Master core Pandas 2.0 concepts, including data structures, indexing, and selection for efficient data manipulation. Load, store, and clean data from various file formats and sources, ensuring data integrity and consistency. Perform advanced data transformation, merging, and aggregation techniques for insightful analysis and reporting. Harness time series data, DateTime operations, and geospatial analysis for specialized data processing needs. Visualize data effectively using Seaborn, Plotly, and advanced geospatial visualization tools. Integrate Pandas 2.0 with machine learning libraries like Scikit-learn, TensorFlow, and PyTorch for predictive analytics. Table of Content Introduction to Pandas 2. 0 Data Read, Storage, and File Formats Indexing and Selecting Data Data Manipulation and Transformation Time Series and DateTime Operations Performance Optimization and Scaling Machine Learning with Pandas 2.0 Text Data and Natural Language Processing Geospatial Data Analysis
-
Autore:
-
Anno edizione:2023
-
Editore:
-
Formato:
-
Testo in en
Formato:
Gli eBook venduti da Feltrinelli.it sono in formato ePub e possono essere protetti da Adobe DRM. In caso di download di un file protetto da DRM si otterrà un file in formato .acs, (Adobe Content Server Message), che dovrà essere aperto tramite Adobe Digital Editions e autorizzato tramite un account Adobe, prima di poter essere letto su pc o trasferito su dispositivi compatibili.
Cloud:
Gli eBook venduti da Feltrinelli.it sono sincronizzati automaticamente su tutti i client di lettura Kobo successivamente all’acquisto. Grazie al Cloud Kobo i progressi di lettura, le note, le evidenziazioni vengono salvati e sincronizzati automaticamente su tutti i dispositivi e le APP di lettura Kobo utilizzati per la lettura.
Clicca qui per sapere come scaricare gli ebook utilizzando un pc con sistema operativo Windows