Pandas in 7 Days: Utilize Python to Manipulate Data, Conduct Scientific Computing, Time Series Analysis, and Exploratory Data Analysis
Pandas in 7 Days: Utilize Python to Manipulate Data, Conduct Scientific Computing, Time Series Analysis, and Exploratory Data Analysis
Dati e Statistiche
Salvato in 0 liste dei desideri
Pandas in 7 Days: Utilize Python to Manipulate Data, Conduct Scientific Computing, Time Series Analysis, and Exploratory Data Analysis
Scaricabile subito
9,49 €
9,49 €
Scaricabile subito

Descrizione


Make data analysis fast, reliable, and clean with Python, Pandas and Matplotlib. KEY FEATURES ? A detailed walk-through of the Pandas library's features with multiple examples. ? Numerous graphical representations and reporting capabilities using popular Matplotlib. ? A high-level overview of extracting data from including files, databases, and the web. DESCRIPTION No matter how large or small your dataset is, the author 'Fabio Nelli' simply used this book to teach all the finest technical coaching on applying Pandas to conduct data analysis with zero worries. Both newcomers and seasoned professionals will benefit from this book. It teaches you how to use the pandas library in just one week. Every day of the week, you'll learn and practise the features and data analysis exercises listed below: Day 01: Get familiar with the fundamental data structures of pandas, including Declaration, data upload, indexing, and so on. Day 02: Execute commands and operations related to data selection and extraction, including slicing, sorting, masking, iteration, and query execution. Day 03: Advanced commands and operations such as grouping, multi-indexing, reshaping, cross-tabulations, and aggregations. Day 04: Working with several data frames, including comparison, joins, concatenation, and merges. Day 05: Cleaning, pre-processing, and numerous strategies for data extraction from external files, the web, databases, and other data sources. Day 06: Working with missing data, interpolation, duplicate labels, boolean data types, text data, and time-series datasets. Day 07: Introduction to Jupyter Notebooks, interactive data analysis, and analytical reporting with Matplotlib's stunning graphics. WHAT YOU WILL LEARN ?Extract, cleanse, and process data from databases, text files, HTML pages, and JSON data. ?Work with DataFrames and Series, and apply functions to scale data manipulations. ?Graph your findings using charts typically used in modern business analytics. ?Learn to use all of the pandas basic and advanced features independently. ? Storing and manipulating labeled/columnar data efficiently. WHO THIS BOOK IS FOR If you're looking to expedite a data science or sophisticated data analysis project, you've come to the perfect place. Each data analysis topic is covered step-by-step with real-world examples. Python knowledge isn't required however, knowing a little bit helps. AUTHOR BIO Fabio Nelli has a master degree in chemistry and a bachelor's degree in IT And Automation Engineering. He is currently working professionally at many research institutes and private companies, presenting educational courses about data analysis and data visualization technologies.

Dettagli

Tutti i dispositivi (eccetto Kindle) Scopri di più
Reflowable
9789355512130

Compatibilità

Formato:

Gli eBook venduti da Feltrinelli.it sono in formato ePub e possono essere protetti da Adobe DRM. In caso di download di un file protetto da DRM si otterrà un file in formato .acs, (Adobe Content Server Message), che dovrà essere aperto tramite Adobe Digital Editions e autorizzato tramite un account Adobe, prima di poter essere letto su pc o trasferito su dispositivi compatibili.

Compatibilità:

Gli eBook venduti da Feltrinelli.it possono essere letti utilizzando uno qualsiasi dei seguenti dispositivi: PC, eReader, Smartphone, Tablet o con una app Kobo iOS o Android.

Cloud:

Gli eBook venduti da Feltrinelli.it sono sincronizzati automaticamente su tutti i client di lettura Kobo successivamente all’acquisto. Grazie al Cloud Kobo i progressi di lettura, le note, le evidenziazioni vengono salvati e sincronizzati automaticamente su tutti i dispositivi e le APP di lettura Kobo utilizzati per la lettura.

Clicca qui per sapere come scaricare gli ebook utilizzando un pc con sistema operativo Windows