Risk Management for Cryptocurrency Portfolios - Yifan He,Davide Lauria,W. Brent Lindquist - cover
Risk Management for Cryptocurrency Portfolios - Yifan He,Davide Lauria,W. Brent Lindquist - cover
Dati e Statistiche
Salvato in 0 liste dei desideri
Risk Management for Cryptocurrency Portfolios
Disponibilità in 3 settimane
49,54 €
49,54 €
Disponibilità in 3 settimane

Descrizione


Cryptocurrencies have transformed finance by opening new avenues for investment and innovation, while exposing portfolios to extreme volatility, fat tails, liquidity shocks, and shifting regulation. Risk Management for Cryptocurrency Portfolios provides a rigorous, practice-oriented toolkit for this landscape. The book blends postmodern portfolio theory, heavy-tailed statistics, and empirically tested optimization methods into a coherent framework tailored to digital assets. Starting from the data, the authors assemble a consistent set of 40 major tokens and examine hourly performance, stylized facts, and benchmarks. They study stationarity, the non-normal nature of returns, and tail risk using Hill estimators and generalized Pareto modeling and quantify distances between return series to guide diversification. The portfolio core begins with mean-variance analysis, the capital market line, and coherent risk measures. Building on this foundation, the book develops mean-CVaR optimization and equivalent formulations, with MATLAB implementations and step-by-step case studies. Strategy chapters compare long-only and long-short constructions, including Jacobs et al. and Lo-Patel approaches, momentum variants, and portfolios under turnover constraints. Performance is evaluated with maximum drawdown and widely used ratios such as Sharpe, Sortino-Satchell, and the Rachev ratio. The dynamic optimization introduces ARMA(1,1)-GARCH(1,1) models with Student's t-innovations, multivariate t-distributions and t-copulas, and the simulation of return scenarios. Robust optimization addresses model misspecification by treating observed return distributions as uncertain; readers learn box and ellipsoidal uncertainty sets, Kantorovich distances between discrete distributions, and robust CVaR portfolios on historical data. Validation is integral. A backtesting suite consisting of value-at-risk tests, including binomial and traffic-light procedures, plus Kupiec, Christoffersen, and Haas tests, assesses model quality and contrasts historical, dynamic, and robust allocations. Written for practitioners, analysts, researchers, and graduate students, the text is selfcontained and comprehensive. Clear exposition, empirical examples, and ready to run MATLAB code make advanced methods usable in day-to-day portfolio construction. Risk Management for Cryptocurrency Portfolios equips readers with insight and tested techniques needed to build, stress-test and refine crypto portfolios with confidence.

Dettagli

Testo in English
240 x 170 mm
500 gr.
9781501520099
Informazioni e Contatti sulla Sicurezza dei Prodotti

Le schede prodotto sono aggiornate in conformità al Regolamento UE 988/2023. Laddove ci fossero taluni dati non disponibili per ragioni indipendenti da Feltrinelli, vi informiamo che stiamo compiendo ogni ragionevole sforzo per inserirli. Vi invitiamo a controllare periodicamente il sito www.lafeltrinelli.it per eventuali novità e aggiornamenti.
Per le vendite di prodotti da terze parti, ciascun venditore si assume la piena e diretta responsabilità per la commercializzazione del prodotto e per la sua conformità al Regolamento UE 988/2023, nonché alle normative nazionali ed europee vigenti.

Per informazioni sulla sicurezza dei prodotti, contattare productsafety@feltrinelli.it