Signal Clarity: Harnessing Deep Learning for Enhanced Detection Capabilities
Signal Clarity: Harnessing Deep Learning for Enhanced Detection Capabilities
Dati e Statistiche
Salvato in 0 liste dei desideri
Signal Clarity: Harnessing Deep Learning for Enhanced Detection Capabilities
Scaricabile subito
28,99 €
28,99 €
Scaricabile subito

Descrizione


"Signal Clarity: Harnessing Deep Learning for Enhanced Detection Capabilities" is a comprehensive guide to applying deep learning techniques to signal detection and analysis. This eBook covers the fundamentals of deep learning and signal processing, and provides practical examples and case studies of how deep learning models can be used to enhance signal clarity and detection capabilities. Learn how to design, train, and deploy deep learning models for signal detection, and discover the latest tools and technologies used in the field. With expert insights and real-world examples, "Signal Clarity" offers a valuable resource for engineers, researchers, and practitioners looking to harness the power of deep learning for signal detection and analysis. In a world drowning in data, extracting weak signals from chaos is the key to breakthroughs. "Signal Clarity: Harnessing Deep Learning for Enhanced Detection Capabilities" is the definitive guide for engineers, researchers, and AI practitioners to master cutting-edge techniques. Core Applications: - Communications: Filter 5G interference, decode weak signals in crowded spectra. - Radar & Sensing: Detect stealth aircraft, map oceans via satellite. - Healthcare: Isolate ECG anomalies, classify cancer cells in noisy images. - Finance: Predict stock trends amid market volatility. - Manufacturing: Identify defects in real-time, prevent equipment failures. Deep Learning Arsenal: - CNNs: Denoise audio, enhance low-res images. - RNNs/LSTMs: Model time-series EEG, seismic data. - Transformers: Parse complex patterns in RF signals. - GANs: Synthesize training data, fill gaps. - Autoencoders: Compress signals, spot anomalies. Step-by-Step Workflow: Preprocess: Normalize, segment, and augment data. Architecture: Choose models (U-Net, ResNet, attention networks). Train: Use TensorFlow/PyTorch, handle class imbalance. Optimize: SNR, BER, ROC curves, and explainability (SHAP). Deploy: Edge devices (Jetson, FPGA), cloud, or real-time systems. Real-World Successes: - NASA: Detected gravitational waves in LIGO noise. - MIT: Classified heart arrhythmias with 98% accuracy. - Nokia: Boosted 5G signal clarity by 30% in dense urban areas. - Defense: Identified stealth drones in cluttered radar. Challenges & Solutions: - Data Scarcity: Synthetic data, transfer learning. - Overfitting: Dropout, batch norm, cross-validation. - Latency: Quantization, model pruning for real-time use. - Bias: Fair datasets, adversarial training. Expert Insights: - Yann LeCun: "Deep learning is the key to unlocking weak signals." - Andrew Ng: "Signal clarity = better decisions, faster." - IEEE: "MI adoption in signal processing grows 25% annually." Why It Matters: - Critical for 6G, quantum sensing, and IoT security. - Reduces false positives in medical diagnoses by 40%. - Saves costs in industrial predictive maintenance. This isn't a math-heavy textbook—it's a practical toolkit. Python code, case studies, and troubleshooting tips. For engineers, data scientists, and ML enthusiasts. Audience: Signal processing, communications, healthcare, finance, and automation professionals. Outcome: Extract hidden insights. Transform noise into clarity. Whether you're working in signal processing, telecommunications, or another field, this eBook provides the knowledge and techniques you need to unlock the full potential of deep learning for signal detection.

Dettagli

Tutti i dispositivi (eccetto Kindle) Scopri di più
Reflowable
9798232755416

Compatibilità

Formato:

Gli eBook venduti da Feltrinelli.it sono in formato ePub e possono essere protetti da Adobe DRM. In caso di download di un file protetto da DRM si otterrà un file in formato .acs, (Adobe Content Server Message), che dovrà essere aperto tramite Adobe Digital Editions e autorizzato tramite un account Adobe, prima di poter essere letto su pc o trasferito su dispositivi compatibili.

Compatibilità:

Gli eBook venduti da Feltrinelli.it possono essere letti utilizzando uno qualsiasi dei seguenti dispositivi: PC, eReader, Smartphone, Tablet o con una app Kobo iOS o Android.

Cloud:

Gli eBook venduti da Feltrinelli.it sono sincronizzati automaticamente su tutti i client di lettura Kobo successivamente all’acquisto. Grazie al Cloud Kobo i progressi di lettura, le note, le evidenziazioni vengono salvati e sincronizzati automaticamente su tutti i dispositivi e le APP di lettura Kobo utilizzati per la lettura.

Clicca qui per sapere come scaricare gli ebook utilizzando un pc con sistema operativo Windows