Big data e sentiment analysis. Il futuro dell'asset management
Il volume fornisce un'introduzione all'uso dei big data e delle tecniche di analisi, tra cui il machine learning, per la stima e l'impiego di indicatori di sentiment nell'asset management. Particolare enfasi viene data alla distinzione tra le molteplici opportunità offerte da fonti di dati alternativi nella teoria e nella pratica della gestione di portafoglio e alla necessità di incorporare il sentiment nei processi decisionali tipici dell'asset management. Oltre a una trattazione teorica, che spazia dai principi della finanza comportamentale alle moderne metodologie del machine learning, il testo è arricchito da casi di studio derivati dalla pratica aziendale su come il sentiment possa influenzare le strategie di portafoglio. Particolare attenzione è riservata agli indicatori di sentiment inferibili dai social media e alle tecniche di analisi testuale. Le varie tecniche di analisi del sentiment sono applicate alle diverse tipologie di portafoglio e approcci di gestione, distinguendo tra mercati azionari, obbligazionari, delle commodity e valutari. Si esamina, inoltre, come il sentiment possa essere sfruttato per prevedere eventi ricorrenti, ivi comprese le crisi finanziarie.
-
Autore:
-
Editore:
-
Collana:
-
Anno edizione:2021
-
In commercio dal:21 ottobre 2021
Le schede prodotto sono aggiornate in conformità al Regolamento UE 988/2023. Laddove ci fossero taluni dati non disponibili per ragioni indipendenti da Feltrinelli, vi informiamo che stiamo compiendo ogni ragionevole sforzo per inserirli. Vi invitiamo a controllare periodicamente il sito www.lafeltrinelli.it per eventuali novità e aggiornamenti.
Per le vendite di prodotti da terze parti, ciascun venditore si assume la piena e diretta responsabilità per la commercializzazione del prodotto e per la sua conformità al Regolamento UE 988/2023, nonché alle normative nazionali ed europee vigenti.
Per informazioni sulla sicurezza dei prodotti, contattare productsafety@feltrinelli.it