Chiudi

Aggiungi l'articolo in

Chiudi
Aggiunto

L’articolo è stato aggiunto alla lista dei desideri

Chiudi

Crea nuova lista

q-Fractional Calculus and Equations
q-Fractional Calculus and Equations
Dati e Statistiche
Fuori di libri Post sulla Community Fuori di libri
Wishlist Salvato in 0 liste dei desideri
q-Fractional Calculus and Equations
Scaricabile subito
46,79 €
46,79 €
Scaricabile subito
Chiudi
Altri venditori
Prezzo e spese di spedizione
ibs
46,79 € Spedizione gratuita
scaricabile subito scaricabile subito
Info
Nuovo
Altri venditori
Prezzo e spese di spedizione
ibs
46,79 € Spedizione gratuita
scaricabile subito scaricabile subito
Info
Nuovo
Altri venditori
Prezzo e spese di spedizione
Chiudi

Tutti i formati ed edizioni

Chiudi
q-Fractional Calculus and Equations
Chiudi

Promo attive (0)

Chiudi

Informazioni del regalo

Descrizione


This nine-chapter monograph introduces a rigorous investigation of *q-*difference operators in standard and fractional settings. It starts with elementary calculus of *q-*differences and integration of Jackson’s type before turning to *q-*difference equations. The existence and uniqueness theorems are derived using successive approximations, leading to systems of equations with retarded arguments. Regular *q-*Sturm–Liouville theory is also introduced; Green’s function is constructed and the eigenfunction expansion theorem is given. The monograph also discusses some integral equations of Volterra and Abel type, as introductory material for the study of fractional q-calculi. Hence fractional *q-*calculi of the types Riemann–Liouville; Grünwald–Letnikov; Caputo; Erdélyi–Kober and Weyl are defined analytically. Fractional *q-*Leibniz rules with applications in *q-*series are also obtained with rigorous proofs of the formal results of Al-Salam-Verma, which remained unproved for decades. In working towards the investigation of *q-*fractional difference equations; families of *q-*Mittag-Leffler functions are defined and their properties are investigated, especially the *q-*Mellin–Barnes integral and Hankel contour integral representation of the *q-*Mittag-Leffler functions under consideration, the distribution, asymptotic and reality of their zeros, establishing *q-*counterparts of Wiman’s results. Fractional *q-*difference equations are studied; existence and uniqueness theorems are given and classes of Cauchy-type problems are completely solved in terms of families of *q-*Mittag-Leffler functions. Among many *q-*analogs of classical results and concepts, *q-*Laplace, *q-Mellin and q2-*Fourier transforms are studied and their applications are investigated.
Leggi di più Leggi di meno

Dettagli

2016
Testo in en
Tutti i dispositivi (eccetto Kindle) Scopri di più
Reflowable
9783642308987
Chiudi
Aggiunto

L'articolo è stato aggiunto al carrello

Compatibilità

Formato:

Gli eBook venduti da Feltrinelli.it sono in formato ePub e possono essere protetti da Adobe DRM. In caso di download di un file protetto da DRM si otterrà un file in formato .acs, (Adobe Content Server Message), che dovrà essere aperto tramite Adobe Digital Editions e autorizzato tramite un account Adobe, prima di poter essere letto su pc o trasferito su dispositivi compatibili.

Compatibilità:

Gli eBook venduti da Feltrinelli.it possono essere letti utilizzando uno qualsiasi dei seguenti dispositivi: PC, eReader, Smartphone, Tablet o con una app Kobo iOS o Android.

Cloud:

Gli eBook venduti da Feltrinelli.it sono sincronizzati automaticamente su tutti i client di lettura Kobo successivamente all’acquisto. Grazie al Cloud Kobo i progressi di lettura, le note, le evidenziazioni vengono salvati e sincronizzati automaticamente su tutti i dispositivi e le APP di lettura Kobo utilizzati per la lettura.

Clicca qui per sapere come scaricare gli ebook utilizzando un pc con sistema operativo Windows

Chiudi

Aggiungi l'articolo in

Chiudi
Aggiunto

L’articolo è stato aggiunto alla lista dei desideri

Chiudi

Crea nuova lista

Chiudi

Inserisci la tua mail

Chiudi

Chiudi

Siamo spiacenti si è verificato un errore imprevisto, la preghiamo di riprovare.

Chiudi

Verrai avvisato via email sulle novità di Nome Autore