Eserciziario di Statistica Inferenziale
Questo testo nasce con l'obiettivo di aiutare lo studente nella transizione fra i concetti teorici e metodologici dell'inferenza statistica e la loro implementazione al computer. La prima parte del testo è infatti focalizzata principalmente su esercizi da risolvere con carta e penna, in modo da far applicare nozioni derivanti da lemmi e teoremi; mentre la seconda parte del testo è costituita da laboratori, in cui si propone sia l'implementazione manuale di algoritmi, sia l'apprendimento di built-in tools per un'analisi efficiente di dataset derivanti da problemi reali. Per ottimizzare la fruizione degli argomenti sviluppati, e per accompagnare il lettore nello studio, il testo è organizzato in capitoli, ciascuno dei quali composto, a sua volta, da una prima parte introduttiva, in cui vengono richiamate le basi teoriche dell'inferenza statistica, e da una seconda parte di esercizi, corredati di un esaustivo svolgimento su carta e, se opportuno, su software. Il testo è rivolto agli studenti dei corsi di laurea di primo livello di Statistica, Matematica, Ingegneria e per i corsi di secondo livello in Data Science.
-
Autore:
-
Editore:
-
Formato:
-
Lingua:Italiano
-
Cloud:
Formato:
Gli eBook venduti da Feltrinelli.it sono in formato ePub e possono essere protetti da Adobe DRM. In caso di download di un file protetto da DRM si otterrà un file in formato .acs, (Adobe Content Server Message), che dovrà essere aperto tramite Adobe Digital Editions e autorizzato tramite un account Adobe, prima di poter essere letto su pc o trasferito su dispositivi compatibili.
Cloud:
Gli eBook venduti da Feltrinelli.it sono sincronizzati automaticamente su tutti i client di lettura Kobo successivamente all’acquisto. Grazie al Cloud Kobo i progressi di lettura, le note, le evidenziazioni vengono salvati e sincronizzati automaticamente su tutti i dispositivi e le APP di lettura Kobo utilizzati per la lettura.
Clicca qui per sapere come scaricare gli ebook utilizzando un pc con sistema operativo Windows