Modellistica numerica per problemi differenziali
In questo testo si introducono i concetti elementari per la modellistica numerica di problemi differenziali alle derivate parziali. Si considerano le classiche equazioni lineari ellittiche, paraboliche ed iperboliche, ma anche altre equazioni, quali quelle di diffusione e trasporto, di Navier-Stokes, e le leggi di conservazione, e si forniscono numerosi esempi fisici che stanno alla base di tali equazioni. Quindi si analizzano metodi di risoluzione numerica basati su elementi finiti, differenze finite, e metodi spettrali. In particolare vengono discussi gli aspetti algoritmici e di implementazione al calcolatore, e si forniscono alcuni programmi in linguaggio MATLAB di semplice utilizzo. Il testo non presuppone una avanzata conoscenza matematica delle equazioni alle derivate parziali: i concetti rigorosamente indispensabili al riguardo sono riportati nell'Appendice. Esso è pertanto adatto agli studenti dei corsi di laurea di indirizzo scientifico (Ingegneria, Matematica, Fisica, Chimica, Scienze dell'Informazione), e consigliabile a ricercatori del mondo accademico ed extra-accademico che vogliano avvicinarsi a questo interessante ramo della matematica applicata.
-
Autore:
-
Editore:
-
Edizione:3
-
Anno edizione:2006
-
In commercio dal:1 gennaio 2006
Le schede prodotto sono aggiornate in conformità al Regolamento UE 988/2023. Laddove ci fossero taluni dati non disponibili per ragioni indipendenti da Feltrinelli, vi informiamo che stiamo compiendo ogni ragionevole sforzo per inserirli. Vi invitiamo a controllare periodicamente il sito www.lafeltrinelli.it per eventuali novità e aggiornamenti.
Per le vendite di prodotti da terze parti, ciascun venditore si assume la piena e diretta responsabilità per la commercializzazione del prodotto e per la sua conformità al Regolamento UE 988/2023, nonché alle normative nazionali ed europee vigenti.
Per informazioni sulla sicurezza dei prodotti, contattare productsafety@feltrinelli.it