Chiudi

Aggiungi l'articolo in

Chiudi
Aggiunto

L’articolo è stato aggiunto alla lista dei desideri

Chiudi

Crea nuova lista

Dati e Statistiche
Fuori di libri Post sulla Community Fuori di libri
Wishlist Salvato in 0 liste dei desideri
Godel's Mistake: The Role of Meaning in Mathematics
Scaricabile subito
6,49 €
6,49 €
Scaricabile subito
Chiudi
Altri venditori
Prezzo e spese di spedizione
ibs
6,49 € Spedizione gratuita
scaricabile subito scaricabile subito
Info
Nuovo
Altri venditori
Prezzo e spese di spedizione
ibs
6,49 € Spedizione gratuita
scaricabile subito scaricabile subito
Info
Nuovo
Altri venditori
Prezzo e spese di spedizione
Chiudi

Tutti i formati ed edizioni

Chiudi
Godel's Mistake: The Role of Meaning in Mathematics
Chiudi

Promo attive (0)

Chiudi
Godel's Mistake: The Role of Meaning in Mathematics
Chiudi

Informazioni del regalo

Descrizione


Why Is Mathematics Incomplete? Gödel's incompleteness theorem is a foundational result in mathematics that proves that any axiomatic theory of numbers will be either inconsistent or incomplete. Turing's Halting problem is a foundational result in computing proving that computers cannot know if a program will halt. Gödel's Mistake connects these theorems to the question of meaning. The book shows that the proofs arise due to category confusions between names, concepts, things, programs, algorithms, problems, etc. The book argues that these problems can be solved by introducing ordinary language categories in mathematics. Where the Solution Lies The solution to the problem, the author argues, requires a new approach to numbers where numbers are treated as types rather than quantities. To view numbers as types requires a foundational shift in which objects are constructed from sets rather than sets from objects. Since sets denote concepts, this shift implies that objects are created from concepts. This also changes our view of space-time from linear and open to hierarchical and closed. In this hierarchical description, objects are symbols of meaning, rather than physical things. The author calls this theory the Type Number Theory (TNT) and shows that the type view of numbers is free of Gödel's Incompleteness and Turing's Halting Problem. How This Book Is Structured Chapter 1: Mechanizing Thought—provides an overview of mathematical, philosophical, linguistic and logical issues that preceded Gödel's and Turing's results and shows that the problems encountered in mathematics have a wider undercurrent extending into other areas of science. Chapter 2: Gödel's Mistrick—discusses Gödel's Incompleteness Theorem and Turing's Halting problem and shows how their proofs rest on category mistakes. The chapter also connects the theorems to the issues of sentence and program meaning, with implications for fields such as artificial intelligence and others. This sets up the motivation for alternative views about numbers and programs that can be free of the paradoxes that arise without semantics. Chapter 3: Mathematics and Reality—the chapter discusses the Platonic notion of what mathematics is, which keeps ideas and things in separate worlds, and argues that they exist in the same world. The need to bring them together changes our view of objects, space-time, numbers and programs. Now, objects are symbols and numbers and programs are types. The implications of this view to the Cartesian mind-body problem and Platonic separation between ideas and things is discussed. Chapter 4: Numbers and Meanings—develops the intuitions about numbers as types by interpreting various classes of numbers— natural numbers, zero, negative numbers, irrationals and rationals, and imaginary numbers—in terms of meanings. The chapter concludes by defining the term Type Number Theory (TNT). Chapter 5: Mathematical Foundations—the chapter critiques some foundational ideas in mathematics including logic, set theory and number theory and shows why the very notion of an object as something logically prior to ideas is logically inconsistent. The author argues that numbers are outcomes of distinguishing, and distinguishing requires distinctions. The foundation of mathematics is therefore not in the idea of objects and collections but in the nature of distinctions. The book concludes with a discussion about how distinctions originate in the nature of observation and the foundation of mathematics can therefore be seen in the fundamental properties of consciousness that divides and classifies in order to know.
Leggi di più Leggi di meno

Dettagli

2019
Testo in en
Tutti i dispositivi (eccetto Kindle) Scopri di più
Reflowable
9788193052341
Chiudi
Aggiunto

L'articolo è stato aggiunto al carrello

Compatibilità

Formato:

Gli eBook venduti da Feltrinelli.it sono in formato ePub e possono essere protetti da Adobe DRM. In caso di download di un file protetto da DRM si otterrà un file in formato .acs, (Adobe Content Server Message), che dovrà essere aperto tramite Adobe Digital Editions e autorizzato tramite un account Adobe, prima di poter essere letto su pc o trasferito su dispositivi compatibili.

Compatibilità:

Gli eBook venduti da Feltrinelli.it possono essere letti utilizzando uno qualsiasi dei seguenti dispositivi: PC, eReader, Smartphone, Tablet o con una app Kobo iOS o Android.

Cloud:

Gli eBook venduti da Feltrinelli.it sono sincronizzati automaticamente su tutti i client di lettura Kobo successivamente all’acquisto. Grazie al Cloud Kobo i progressi di lettura, le note, le evidenziazioni vengono salvati e sincronizzati automaticamente su tutti i dispositivi e le APP di lettura Kobo utilizzati per la lettura.

Clicca qui per sapere come scaricare gli ebook utilizzando un pc con sistema operativo Windows

Chiudi

Aggiungi l'articolo in

Chiudi
Aggiunto

L’articolo è stato aggiunto alla lista dei desideri

Chiudi

Crea nuova lista

Chiudi

Inserisci la tua mail

Chiudi

Chiudi

Siamo spiacenti si è verificato un errore imprevisto, la preghiamo di riprovare.

Chiudi

Verrai avvisato via email sulle novità di Nome Autore